
Kubernetes
in practice

Bria n Stort i

Welcome!

Thanks for checking out this sample of Kubernetes in Practice!

There are excerpts from three chapters included in this sample. Wewill start

by deploying our first application with Kubernetes, then we will talk about

how Pods work, and how to make our applications more reliable with De-

ployments.

If youget stuckat anypoint, don’thesitate toemailmeatbrian@brianstorti.com

or sendme amessage on twitter.

If you want the full book, you can get it at kubernetesinpractice.com. Enjoy!

1

https://kubernetesinpractice.com/
https://twitter.com/brianstorti
https://twitter.com/brianstorti

Kubernetes in Practice

Brian Storti

Contents

Deploying our first application 3

Pods 7

Introduction . 7

Multi-container Pods . 10

Playing with running pods . 11

It’s your turn . 15

Recap . 16

Deployments 17

Introduction . 17

Defining our Deployment manifest . 19

Restarting failed pods . 23

Scaling up our application . 24

Scaling it down . 28

Rolling out releases . 29

1

Controlling the rollout rate . 34

Using a different rollout strategy . 36

Recap . 38

Thank you! 40

2

Deploying our first application

Beforewe start talking about all the things you can dowith Kubernetes, let’s

run a quick example so you can see how thingswork in practice. Don’tworry

if youdon’t understandeverythingwearedoing, I justwant to showyou that

getting an application to run on Kubernetes is not that complicated.

As we will discuss later, we usually work with Kubernetes in a declarative

way, that is, instead of telling it what to do, we send it a manifest (as a yaml

file) describing our desired state. In this case, we want to run nginx, so the

manifest would be something like this:

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx-container

image: nginx

We’ll look into thesemanifest files inmore detail later, so don’tworry about

that for now. To send the manifest to Kubernetes we will use the kubectl

command line tool, that you should already have installed.

Save this file as nginx.yaml, and then run

3

$ kubectl apply -f nginx.yaml

You should see amessage saying the nginx pod was created. If you now run

kubectl get pods, you will see our application is being created:

$ kubectl get pods

NAME READY STATUS RESTARTS

nginx 0/1 ContainerCreating 0

The ContainerCreating status means Kubernetes is downloading the ng-

inx image so we can run it locally. After a few seconds, if you run this com-

mand again, you will see the pod is now in the Running state.

And that’s all we need to run an application with Kubernetes! Not that com-

plicated, right?

But just seeing a Running state is not good enough, let’s try to actually see

this application in our browser to make sure it’s running fine.

We’ll later learn different ways to expose our applications so they can be ac-

cessed both by other applications running in our Kubernetes cluster and by

our users, but for now let’s just forward the requests for localhost to this

application:

$ kubectl port-forward nginx 1234:80

Weagainusedkubectl, butnowcalling theport-forward command. Itwill

take the name of our application, that is nginx, and forward the requests

4

received locally on port 1234 to the container’s port 80 (that’s the default

port nginx is listening to).

Now if you try to access http://localhost:1234 in your browser, you

should see the nginxwelcome page.

Let’s recap what we did:

1. We created a manifest file called nginx.yaml saying we wanted to run

the nginx docker image

2. We sent this manifest to Kubernetes using kubectl

3. After we confirmed the application was running, we used kubectl

5

again to forward request received on port 1234 to our application.

And that’s it, really. It took us less than 10 lines of yaml to run an appli-

cation, as what’s cool about this is that it’s not at all different from what

we would do if we were running Kubernetes in a cloud provider, like AWS,

Google Cloud or Azure. The only thing that would change is that kubectl

would be connected to a different cluster (instead of our local Kubernetes

instance).

Of course, this is a very simple example andwe are not doing anything super

useful, but the principles used here will be applicable to almost everything

we do in Kubernetes. We will write a manifest defining what we want, then

we will give this manifest to Kubernetes, and it will do its best to make our

desired state (e.g. to have an nginx container running) become reality. That

isKubernetes’modus operandi, it runs this infinite reconciliation loop check-

ing what’s our desired state and changing the actual state to match it, so we

just need to learn how to speak its language to tell exactly what we want.

So let’s get started!

6

Pods

Introduction

Pods are where our applications run. It’s the basic building block and the

atomic unit of scheduling in Kubernetes.

Each pod will include one or more containers and every time we run a con-

tainer in Kubernetes, it will be inside a pod.

Pods are the atomic unit of scheduling

It is important to understand that a pod is the atomic unit of scheduling

in Kubernetes, so if we want to run, say, 10 replicas of our application, we

would create 10 pods, instead of creating 1 pod with 10 containers. We will

7

see more examples of that in practice when we start talking about deploy-

ments.

If you remember from a previous example, we had a manifest file like this:

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx-container

image: nginx

You will notice we have a kind key, saying that this manifest is defining a

8

Pod. Then we have the metadata, where we define a unique name for this

pod (nginx), and a spec section, where we define what we want to run in

this pod. In our case, we are running a container called nginx-container,

and saying that the docker image used for this container is called nginx.

Mostmanifest fileswill follow a similar format. There are several other keys

that can be defined, but this is theminimumwe need to have a running pod.

Where does the image come from?

In thismanifest we are defining nginx as the docker image name to run, but

we never tell Kubernetes where it should look for this image.

The samewaywe can store code repositories in services likeGithuborGitlab,

we can store images in a docker registry (and there are several options avail-

able). Whenwe don’t specify which registry wewant to use, Kubernetes will

assume wemean DockerHub.

If we want to be more explicit we can change our manifest to use the full

image path:

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx-container

9

image: registry.hub.docker.com/library/nginx

Or, if you are using a different service to store your images (say, ECR), we

can define its full path as well:

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx-container

image: 579849551917.dkr.ecr.us-east-1.amazonaws.com/nginx

Multi-container Pods

At first glance a pod seems pretty similar to a container, but the main dif-

ference is that we can have multiple containers running inside a single pod,

so we can think of a pod as a way to group containers that cooperate to do

something.

In most cases, though, especially for simple applications like the ones we

are running here, we will have only one container per pod.

Whenwe runmore than one container in a single pod, it’s usually to support

theprimary application. For example,we couldhaveourprimarynginx con-

10

tainer running alongside another container that periodically pulls a github

repository to update the website nginx is serving.

In this case, the primary container is nginx, that is serving our website, and

the container that is getting the code from github is there just to help this

pod serve its main function.

Playing with running pods

After we have a pod running, we can interact with it in a few different ways.

Let’s see a few examples.

If you don’t have the pod fromour previous example running, copy theman-

11

ifest to a file called nginx.yaml and run

$ kubectl apply -f nginx.yaml

To access the application from your browser, run

$ kubectl port-forward nginx 1234:80

Streaming logs

Our application is receiving requests, so it would be useful to see everything

it’s logging to stdout.

We can do that directly with the kubectl logs command:

$ kubectl logs --follow nginx

^ ^

| |

------------- tells kubectl to keep

| streaming the logs live,

| instead of just

| printing and exiting

|

---- the name of the pod we want

to see the logs

Now if you try to access http://localhost:1234 again, you should see the

logs showing up here.

12

Executing commands

We can also execute arbitrary commands in a container running in our pod.

It’s like opening an ssh connection to a machine where our application

is running and being able to inspect it. Let’s start with a simple example,

where we just run the ls command in our nginx container:

$ kubectl exec nginx ls

bin

boot

dev

etc

home

...

We call the exec command, passing the name of the pod and the command

we want to run, and the output is printed in our terminal.

We can also run an interactive session using the -it flags. For example, we

can start a bash session in this container:

$ kubectl exec -it nginx bash

root@nginx:/#

And now you should be inside the container! And again, it doesn’t matter

where this container is running, if it’s in your local machine or in an EC2

instance in AWS, theway you interact with it through kubectl is exactly the

13

same.

Let’s try to change something in this container to see what happens:

$ root@nginx:/# echo "it works!" > /usr/share/nginx/html/index.html

When we access http://localhost:1234, nginx is serving the static html

present in this location (/usr/share/nginx/html/index.html), so we are

just overriding this html file with the string "it works!", and now if you

try refreshing the page you will see this change.

This is certainly not something you will want to do in a production environ-

ment (also because as soon as the pod is restarted our changes are lost) but it

can be useful to poke around, debug issues and understand why a container

behaves the way it does.

Killing pods

Lastly, we can kill our pod, either because we don’t need it anymore or to

simulate a failure. We can do that in two different ways.

First, killing it by name:

$ kubectl delete pod nginx

pod "nginx" deleted

Or by sending the samemanifest file we used to create the pod:

14

$ kubectl delete -f nginx.yaml

pod "nginx" deleted

And now if you try to list your pods, nginx should be gone:

$ kubectl get pods

No resources found.

Although that’s what we expect from this example, it also exposes a prob-

lem we have: If for some reason our application crashes (and it will crash,

eventually), it’s not automatically rescheduled.

For that reason, we’ll usually not create pods directly, as we did here, but

instead use a higher-level object called Deployment to create and manage

our pods, as we will see in the next chapter.

It’s your turn

Almost everything in Kubernetes will work around pods, so it’s very impor-

tant to understand what they are and how to run and interact with them. I

encourage you to try to run a pod yourself.

In the examples so farwehavebeenusingnginx, so agoodexercisewouldbe

to try to run Apache, that is another web server that works similarly. Here’s

a list of things you could do:

• Write a podmanifest file to run the apache container (the docker image

15

is called httpd).

• Use kubectl to apply this manifest and see it running.

• Use kubectl port-forward to send requests from localhost:1234

to the container’s port 80.

• Confirm you can see Apache’s default page saying “It works!” when

you access localhost:1234.

• Enter the container and change the contents of the file

/usr/local/apache2/htdocs/index.html so when you refresh the

page you can see your changes.

If you can do that, well done! You already understand the main concept we

will beworkingwith. Fromnowon almost everythingwewill do is to ensure

these pods are running the way they should.

Recap

• A pod is the atomic unit of scheduling in Kubernetes. It’s where our

containers run.

• We can have multiple containers running in the same pod, but we usu-

ally have one primary container and the others just helping the pri-

mary.

• We don’t scale applications by creating a podwithmultiple containers,

but by creating multiple pods.

• We can interact with running pods through kubectl.

• Pods are not rescheduled automatically when they die.

16

Deployments

Introduction

We saw that when a pod dies, either because we manually kill it or because

something unexpected happens, Kuberneteswill not automatically resched-

ule it.

That’s one of the reasons why we will almost never run pods directly. We

will almost always want to manage pods with another Kubernetes resource

called Deployment. Other thanmaking sure our pods are rescheduled when

they die, deployments will also help us with several other things:

• Wecanusedeployments to scaleourapplications, increasing/decreasing

the number of replicas we have running (so far we have only run 1

replica of our application)

• Deployments can handle the rollout of new versions of our application,

so we can go from v1 to v2without any downtime

• And they also allow us to easily rollback bad releases, as well as pre-

venting bad releases from going through altogether in some cases

Beforewe start talking about howDeploymentswork, let’s take a look at the

applicationwewill run. So far we have only used the nginx image because it

was super simple and convenient to demonstrate how to run an application

in Kubernetes. Nowwe are going to run our own application so we canmore

easily control different versions and introduce the behavior we want to test

17

our use cases.

Iwrote this very simple application inRuby, but youcanchange it if youwant

and use any other tool you prefer. As long as it’s packaged as a docker image,

everything will work the same way.

Here’s the application code:

app.rb

require "sinatra"

set :bind, "0.0.0.0"

get "*" do

"[v1] Hello, Kubernetes!\n"

end

As you can see, there’s notmuch going on. It’s using Sinatra, that is a Ruby

library that provides a DSL to create web applications. In this case, we are

accepting requests to any path and returning the string "[v1] Hello, Ku-

bernetes!".

To package this application in a docker image, we can use a Dockerfile like

this one:

FROM ruby:2.6.1-alpine3.9

RUN apk add curl && gem install sinatra

COPY app.rb .

18

ENTRYPOINT ["ruby", "app.rb"]

Herewedefine that ourbase image is anofficialRuby image, installsinatra,

copy theapp.rbfile (thathas the codewe just saw), anddefine thecommand

ruby app.rb as the image’s entrypoint.

And that’s all the code we need for now.

You can push this image to your DockerHub account if you have one, or, if

you prefer, you can just use the image frommy repository. To use your own

image just replace everywhere you see brianstortiwith your account:

Build the image

$ docker build . -t brianstorti/hellok8s:v1

And push it to DockerHub

$ docker push brianstorti/hellok8s:v1

After the image is uploaded, we are ready to use it in our manifests!

Defining our Deployment manifest

Just like we defined amanifest for our nginx pod, we need to define amani-

fest for a deployment, and they actually look fairly similar:

apiVersion: apps/v1

kind: Deployment

19

metadata:

name: hellok8s

spec:

replicas: 1

selector:

matchLabels:

app: hellok8s

template:

metadata:

labels:

app: hellok8s

spec:

containers:

- image: brianstorti/hellok8s:v1

name: hellok8s-container

Let’s go through all the fields in thismanifest to understandwhat’s happen-

ing. First, we tell Kubernetes what kind of object we are defining here. In

our case, this is a Deployment.

In the metadata.name field we define a unique name for our deployment.

This can be anything that helps you identify what this deployment is man-

aging.

In the spec section is where we define what this deployment will do. First,

we define how many replicas we want. That is, how many exact copies of

20

this pod we want to run. For now we’re running just 1 replica, but we will

play with that field in a bit.

The selector section is probably the only thing that’s not super intuitive

right away. What we are doing in this field is telling Kubernetes that this

deployment is managing all the pods that have a label called app with the

value hellok8s. This is what links deployments to pods. Labels are simply

key-value pairs that you define for your pods, and that’swhat is used tofind

all the pods that a Deployment needs to look after.

Then we define the template section, that’s the definition of pods we want

to run. Here we are defining a pod with the label app: hellok8s (to cre-

ate the link with the deployment), and saying this pod will run the bri-

anstorti/hellok8s:v1 docker image.

This can be a bit daunting the first time you see, but as you start using and

writing more manifests it will become natural, I promise.

Okay, enough talking, let’s see this in action. Save this file as deploy-

ment.yaml and apply it to your cluster:

$ kubectl apply -f deployment.yaml

deployment.apps/hellok8s created

Now if you inspect the deployments you have running, you should see our

new hellok8s there:

$ kubectl get deployments

21

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

hellok8s 1 1 1 1

And if you inspect your pods, you will see that a new podwas also created by

this deployment.

$ kubectl get pods

NAME READY STATUS RESTARTS

hellok8s-6678f66cb8-42jtr 1/1 Running 0

So there are a few things to notice here.

First, in the deployments output you see a couple of columns to indicate the

state of this deployment. We said we wanted only 1 replica of this pod, so

that’swhatwe have in the DESIRED column. In the CURRENT columnwehave

the actual number of pods that we have running at thismoment, and Kuber-

netes will always try tomatch it to our desired state. In this case, it also says

1, so things look fine. We’ll check what the UP-TO-DATE and the AVAILABLE

columnsmean in a little bit.

From the pods output, you will notice that the pod name now has a some-

what random suffix ("-6678f66cb8-42jtr" in this example, but it will be

different on your machine). It needs to have this suffix because it’s being

managed by our deployment, and pods can come and go (as we will soon

confirm), and we can also have multiple replicas for this pod, so they can’t

all have the same name. The thing to keep in mind is that the name of your

22

pods are not stable and they can change for various reasons.

This pod will behave exactly the same as the ones we created before, so all

the things we could do with the nginx pod we created directly, we can also

do with this one. For example, let’s try to use port-forward again to send

it a request:

replace the pod name to what you have running locally

$ kubectl port-forward hellok8s-6678f66cb8-42jtr 1234:4567

And if you try to access http://localhost:1234 in your browser you

should see our app’s response: "[v1] Hello, Kubernetes!".

Cool, we see this deployment is just creating a pod for us, and that’swhatwe

already had beforewhenwe created the pod directly, so let’s seewhatmakes

deployments so special.

Restarting failed pods

The problem we noticed with pods is that they were not automatically

rescheduled when they died, so let’s try to kill this pod now to see what

happens.

$ kubectl get pods

NAME READY STATUS RESTARTS

hellok8s-6678f66cb8-42jtr 1/1 Running 0

23

$ kubectl delete pod hellok8s-6678f66cb8-42jtr

pod "hellok8s-6678f66cb8-42jtr" deleted

$ kubectl get pods

NAME READY STATUS RESTARTS

hellok8s-6678f66cb8-8nqf2 1/1 Running 0

So that’s nice, we see that as soon the deployment notices our pod died, it

starts a new one. That goes back to the reconciliation loop we talked about,

Kubernetes is always trying to ensure our desired statematches our current

state, and if it doesn’t (like when the actual number of pods we had running

went from 1 to 0 because we killed it), it will take the necessary actions to go

back to a stable state, that in this case means starting a new pod.

Scaling up our application

Another cool thing that deployments cando is to scale up anddown thenum-

ber of replicaswehave running. Right nowweare running a single container

for our application. Changing that is just a matter of updating our manifest

file with our new desired number of replica and sending that to Kubernetes:

deployment.yaml

apiVersion: apps/v1

kind: Deployment

24

metadata:

name: hellok8s

spec:

+ replicas: 10

selector:

matchLabels:

app: hellok8s

template:

metadata:

labels:

app: hellok8s

spec:

containers:

- image: brianstorti/hellok8s:v1

name: hellok8s-container

The manifest is exactly the same, except for the replicas field that we

changed from 1 to 10. When we apply this change, we should see a bunch of

new containers being created:

$ kubectl apply -f deployment.yaml

deployment.apps/hellok8s configured

Kubernetes notices this deployment already exists, so it just configures it to

use 10 replicas instead of 1.

25

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

hellok8s 10 10 10 1

Inspecting the deployment we see that we now have 10 replicas, but only 1

is available. That’s because the other 9 containers are still being created, as

we can see by inspecting the running pods:

$ kubectl get pods

NAME READY STATUS

hellok8s-6678f66cb8-8nqf2 1/1 Running

hellok8s-6678f66cb8-6r7fb 0/1 Pending

hellok8s-6678f66cb8-7bg4s 0/1 Pending

hellok8s-6678f66cb8-96xh5 0/1 Pending

hellok8s-6678f66cb8-cmb4j 0/1 ContainerCreating

hellok8s-6678f66cb8-h5tg4 0/1 ContainerCreating

hellok8s-6678f66cb8-j2b5n 0/1 Pending

hellok8s-6678f66cb8-l5hzw 0/1 Pending

hellok8s-6678f66cb8-r9bzd 0/1 ContainerCreating

hellok8s-6678f66cb8-wl4bb 0/1 ContainerCreating

After a few short seconds the number of available pods should go to 10 as

well, and all the pods will be running.

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

hellok8s 10 10 10 10

26

$ kubectl get pods

NAME READY STATUS RESTARTS

hellok8s-6678f66cb8-8nqf2 1/1 Running 0

hellok8s-6678f66cb8-6r7fb 1/1 Running 0

hellok8s-6678f66cb8-7bg4s 1/1 Running 0

hellok8s-6678f66cb8-96xh5 1/1 Running 0

hellok8s-6678f66cb8-cmb4j 1/1 Running 0

hellok8s-6678f66cb8-h5tg4 1/1 Running 0

hellok8s-6678f66cb8-j2b5n 1/1 Running 0

hellok8s-6678f66cb8-l5hzw 1/1 Running 0

hellok8s-6678f66cb8-r9bzd 1/1 Running 0

hellok8s-6678f66cb8-wl4bb 1/1 Running 0

And there we have it, 10 replicas of our application running.

A note about how containers are scheduled

Rightnow, asweare runningKubernetes locally,wehaveonly 1workernode

running our applications, so all these pods will run on this node. In a pro-

duction environment, where we will likely have several worker nodes in our

cluster, Kubernetes will try to schedule these pods across different nodes so

even if one of the nodes fails our application will still be up.

27

Scaling it down

Youcanprobably imaginewhatweneed todoscale thenumberofpodsdown,

now. Just change the deployment manifest to match the number of replicas

you want and Kubernetes will make sure to terminate the pods for us.

apiVersion: apps/v1

kind: Deployment

metadata:

name: hellok8s

spec:

+ replicas: 2

selector:

matchLabels:

app: hellok8s

template:

metadata:

labels:

app: hellok8s

spec:

containers:

- image: brianstorti/hellok8s:v1

name: hellok8s-container

$ kubectl apply -f deployment.yaml

deployment.apps/hellok8s configured

28

$ kubectl get pods

NAME READY STATUS

hellok8s-6678f66cb8-8nqf2 1/1 Running

hellok8s-6678f66cb8-cmb4j 1/1 Running

hellok8s-6678f66cb8-6r7fb 1/1 Terminating

hellok8s-6678f66cb8-7bg4s 1/1 Terminating

hellok8s-6678f66cb8-96xh5 1/1 Terminating

hellok8s-6678f66cb8-h5tg4 1/1 Terminating

hellok8s-6678f66cb8-j2b5n 1/1 Terminating

hellok8s-6678f66cb8-l5hzw 1/1 Terminating

hellok8s-6678f66cb8-r9bzd 1/1 Terminating

hellok8s-6678f66cb8-wl4bb 1/1 Terminating

And after a few seconds you should see the 8 exceeding pods gone.

Rolling out releases

Another thing that deployments can help us with is rolling out new versions

of our application. Let’s first create a new version of our service to test that

out. Here’s the code for our v2:

get "*" do

"[v2] Hello, Kubernetes!\n"

end

Then we build and push this image to DockerHub again to be able to start

29

using it in our manifest.

$ docker build . -t brianstorti/hellok8s:v2

$ docker push brianstorti/hellok8s:v2

Nowwe have the tags v1 and v2 for this same image to start playing with.

Releasing this new version is as easy as updating the manifest file to point

to the version we want to use.

apiVersion: apps/v1

kind: Deployment

metadata:

name: hellok8s

spec:

replicas: 2

selector:

matchLabels:

app: hellok8s

template:

metadata:

labels:

app: hellok8s

spec:

containers:

- - image: brianstorti/hellok8s:v1

+ - image: brianstorti/hellok8s:v2

30

name: hellok8s-container

Again, theonly thingwehad to changewas the image that thisdeployment is

using. Now if you apply this manifest and keep watching the pods we have

running, you will see Kubernetes starting new pods that use the v2 image

and terminating the old pods

You can use the --watch flag to watch changes to a command output.

For example: kubectl get pods --watch will print a new line

for every change in its output. Sometimes it can be hard to see what’s

happening with the format of this output, so I personally prefer the

watch command thatwill keep rerunning a given command every few

seconds to show the latest outputs:

$ watch kubectl get pods

You may need to install watch in your system to be able to use it.

$ kubectl apply -f deployment.yaml

deployment.apps/hellok8s configured

$ kubectl get pods

You should see new pods being created

and the old ones being terminated.

After Kubernetes finishes running, you can try to access the service again to

make sure you have v2 running:

31

$ kubectl get pods

NAME READY STATUS

hellok8s-6678f66cb8-52zt9 1/1 Running

hellok8s-6678f66cb8-nxphs 1/1 Running

make sure you replace the pod name

$ kubectl port-forward hellok8s-6678f66cb8-52zt9 1234:4567

$ curl http://localhost:1234

[v2] Hello, Kubernetes!

Cool, it works! And that seems pretty simple, but let’s take a moment to

think about all the work Kubernetes is doing for us.

The kind of release that was done is called a RollingUpdate, which means

we first create one pod with the new version, and, after it’s running, we ter-

minate one pod running the previous versions, andwe keep doing that until

all the pods running are using the desired version.

32

Let’s say we have 10 pods running v1 and we wanted tomanually release v2.

Wewould need tomanually start a newpod,wait until it was up and running,

then terminate one of the pods still running v1, and repeat that process 10

33

times.

Controlling the rollout rate

In this casewe have only 2 replicas, so rolling out a new version doesn’t take

too long. But imagine if we had, say, 100 replicas running and we wanted to

rollout a new version in the same way, adding one new pod with the new

version, waiting until it’s ready, and removing one pod with the old version.

It would take forever!

There are two properties we can use to define how fast our rollout will hap-

pen: maxSurge and maxUnavailable.

The maxSurge property will define how many pods we can have exceeding

ourdesiredreplica count (specified in thedeploymentmanifest), andmax-

Unavailable defines how many pods we can have below this count. These

properties can be defined as an absolute number (e.g. 10) or as a percentage

(e.g. 20%). The default value for both is 25%.

Here’s an example of how that would work, assuming a Deployment with 3

replicas and a maxSurge and maxUnavailable of 1 .

34

Kubernetes will ensure that at any point in time during this rollout we will

have a minimum of 2 (desired - maxUnavailable) and maximum of 4

(desired + maxSurge) replicas.

To change the default value (25%) for these properties, you can define this in

your manifest:

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: hellok8s

spec:

+ strategy:

35

+ rollingUpdate:

+ maxSurge: 1

+ maxUnavailable: 1

replicas: 3

selector:

matchLabels:

app: hellok8s

template:

metadata:

labels:

app: hellok8s

spec:

containers:

- image: brianstorti/hellok8s:v2

name: hellok8s-container

Using a different rollout strategy

As you may have noticed, when we are using the rollinUpdate strategy

(which is the default) we will have, for a period of time, both versions of

our application (v1 and v2) running in parallel. If for some reason you don’t

want that to happen, Deployments can be configured with e different strat-

egy called Recreate:

36

apiVersion: apps/v1

kind: Deployment

metadata:

name: hellok8s2

spec:

+ strategy:

+ type: Recreate

replicas: 3

selector:

matchLabels:

app: hellok8s

template:

metadata:

labels:

app: hellok8s

spec:

containers:

- image: brianstorti/hellok8s:v2

name: hellok8s-container

And what will happen is that all your pods will be terminated before pods

using thenewversion are created (at the cost of having aperiodof downtime

while the new pods are being created)[^1]:

37

Recap

• Deployments are high level resources that will manage pods for us.

• They can help us scale our application up and down by creating and

deleting replicas of our pods.

• We can use two different strategies to rollout new versions of our ap-

plications: Recreate and RollingUpdate.

• The Recreate strategywill guarantee we don’t have different versions

running at the same time, at the cost of requiring a short downtime.

• RollingUpdate is the default strategy and will gradually create pods

that use the new version while terminating pods running the previous

versions.

38

• We can use maxSurge and maxUnavailable to control the rollout rate.

39

Thank you!

Thanks for reading this sample from Kubernetes in Practice. I hope you

enjoyed it! If you want the full book, you can get it at kubernetesinprac-

tice.com.

If you have any questions, feel free to email me at brian@brianstorti.com or

sendme amessage on twitter.

Have a great day!

40

https://kubernetesinpractice.com/
https://kubernetesinpractice.com/
https://twitter.com/brianstorti

	Deploying our first application
	Pods
	Introduction
	Multi-container Pods
	Playing with running pods
	It's your turn
	Recap

	Deployments
	Introduction
	Defining our Deployment manifest
	Restarting failed pods
	Scaling up our application
	Scaling it down
	Rolling out releases
	Controlling the rollout rate
	Using a different rollout strategy
	Recap

	Thank you!

